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ABSTRACT
In this paper, we present a tabu search heuristic for solving the multicommodity location
problem with balancing requirements. This heuristic improves upon a previous imple-
mentation by performing an exact, rather than approximate, evaluation of neighboring
solutions. It also includes a number of refinements, in particular, a new initialization
procedure and enhanced neighborhood reduction techniques. The heuristic is shown to
be very effective, as it identifies the optimal solution on every instance taken from a set
of randomly generated prohlems. It also finds optimal or near-optimal solutions on a
set of large-size instances derived from an actual application, with computation times
that show little variance as compared with the currently best known exact method.
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RESUME
Dans cet article, nous presentons une methode de recherche avec tabous pour resoudre
le probleme de localisation multiproduit avec exigences d'equilibrage. Cette heuris-
tique effectue une evaluation exacte des voisins, permettant ainsi d'ameliorer les per-
formances d'une methode de recherche avec tabous precedemment developpee pour le
meme probleme, et basee sur une evaluation approximative. La methode suggeree in-
clut egalement une nouvelle procedure d'initialisation, de meme que des techniques
sophistiquees de reduction des voisinages. Par des experimentations numeriques sur
un ensemble de problemes generes aleatoirement, nous montrons que la methode est
efficace, puisqu'elle permet d'identiHer la solution optimale de chacun de ces problemes.
Sur des exemplaires de grande taille tires d'une application reelle, I'heuristique produit
des solutions optimales pu quasi-optimales, avec des temps de calcul relativement sta-
bles en comparaison de la meilleure methode exacte connue a ce jour pour resoudre le
probleme.

Mots-cles : Recherche avec tabous, probleme de localisation multiproduit avec exi-
gences d'equihbrage.

1. INTRODUCTION

The multicommodity location problem with balancing requirements (MLB) was first
introduced by Crainic, Dejax and Delorme [5]. The problem is motivated by an indus-
trial application related to the management of a heterogeneous fieet of containers for an
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international maritime shipping company. Once a ship arrives at the port, the company
has to deliver the loaded containers, which may come in several types and sizes, to
designated in-land destinations. Following their unloading by the importing customer,
empty containers are moved to a depot. Later on, they may be delivered from there to
customers who request containers for subsequent shipping of their own products. In ad-
dition, empty containers often have to be repositioned to other depots. These interdepot
movements are a consequence of regional unbalances in empty container availabilities
and needs throughout the network: some areas lack containers of certain types, while
others have a surplus. This requires balancing movements of empty containers among
depots, which differentiates this problem from classical location-allocation applications.
The general problem is therefore to locate depots in order to collect the supply of empty
containers available at customers' sites and to satisfy the customer requests for empty
containers, while minimizing the total operating costs, namely, the costs of opening
and operating the depots, and the costs generated by customer-depot and interdepot
movements.

Among the procedures that have been proposed for solving the MLB [6, 7, 8, 9, 10,
11, 12, 13], the tabu search heuristic of Crainic, Gendreau, Soriano and Toulouse [8]
(hereafter, denoted the CGST heuristic) proved to be particularly effective. This was
illustrated through numerical comparisons with lower bounds obtained with a dual-
ascent procedure [6]. Later on, Gendron and Grainic [12] observed that, for many
instances, solutions obtained by the GGST heuristic fall short of optimal ones, computed
by their branch-and-bound algorithm.

The GGST heuristic is based on an approximate evaluation of each neighbor of the
current solution. This algorithmic choice was motivated by the observation that ex-
act evaluations are computationally expensive, since each one involves the solution of
a multicommodity uncapacitated minimum cost network flow problem (MGNF). How-
ever, with the advent of highly sophisticated linear programming (LP) solvers, including
adaptations of the simplex method to network flow problems and advanced reoptimiza-
tion capabilities, exact evaluations might now be a viable alternative. The objectives
of this paper are to describe an improved tabu search heuristic based on exact neighbor
evaluation and to show that the proposed method is more effective than the previous
GGST implementation. To this end, computational results are reported on the set of
randomly generated problems used for testing GGST [8]. In addition, results are re-
ported on instances taken from a large-size actual application and comparisons with
respect both to solution quality and computation times are provided with the best
known exact method for solving the problem [12].

The organization of the paper is the following. In Section 2, we give a mathematical
formulation of the MLB and describe the MGNF subproblem used to evaluate neighbor-
ing solutions. Section 3 presents the new tabu search heuristic, which shares with GGST
a similar global search strategy, but also shows a number of important distinct features,
including different initialization and neighborhood reduction procedures. Gomputa-
tional experiments are reported and analyzed in Section 4. The conclusion summarizes
our work and proposes extensions. Throughout the paper, we assume familiarity with
the principles of tabu search; for further details, the interested reader is referred to [14].

2. PROBLEM FORMULATION

To formulate the problem, we consider a directed network G = [N, A), where N is
the set of nodes and A is the set of arcs. There are several commodities (types of
containers) moving through the network and represented by set P. The set of nodes
may be partitioned into three subsets; O, the set of origin nodes (supply customers);
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D, the set of destination nodes {demand customers); and T, the set of transshipment
nodes {depots). For each depot j € T, we define 0(j) = {i e O ; (i, j) e ̂ 4} and D{j) =
{i e D : (j, t) € J4}, the sets of customers adjacent to this depot, and we assume that
there exists at least one origin or destination adjacent to each depot j (i.e., O{j)\jD{j) ^
0). For each node i £ N, we define the sets of depots adjacent to this node in both
d i r e c t i o n s : T+{i) = {j€T :{i,j) € A } , a n d T~{i) = { j € T : {j,i) e A } . S i n c e i t is
assumed that there are no arcs between customers, the set of arcs may be partitioned
into three subsets: customer-to-depot arcs, AOT = {{i, j) € A : i £ O, j € T}; depot-
to-customer arcs, ATD = {(hj) £ A : i € T, j e D}; and depot-to-depot arcs, ATT =
{{i,3}eA:ieT,jeT}.

The problem consists in minimizing the costs incurred by moving flows of com-
modities through the network to satisfy the supplies at origins and, the demands at
destinations. For each supply customer i £ O, the supply of commodity p is noted
o ,̂ while for each demand customer i £ D, the demand for commodity p is noted d\.
All supplies and demands are assumed to be non-negative and deterministic. A non-
negative cost c .̂ is incurred for each unit of flow of commodity p moving on arc (z, j).
In addition, for each depot j £ T, a non-negative fixed cost fj is incurred if the depot
is opened.

Let x^j represent the amount of fiow of commodity p moving on arc (̂ , j), and yj
be the binary location variable that assumes value 1 if depot j is opened, and value 0
otherwise. The problem is then formulated as:

subject to

^ 4 . = of, VteO,pGP, (2)
)

^"ji = dl, Vi£D,p£P, (3)
)

E 4+ E 4^-E 4 - E <J = 0' '^J^T,p£P, (4)
keT+(j) ieo(j) keT~{j)

4 < o^Vj, Wj£T,i£0{j),p£P,{5)

4 > 0' y{i,j)£A,p£P, (7)

yj £ {0,1}, V j e T . (8)

Constraints (2) and (3) ensure that supply and demand requirements are met, relations
(4) correspond to fiow conservation constraints at depot sites, while equations (5) and
(6) forbid customer-related movements through closed depots. Note that analogous
constraints for the interdepot fiows are redundant if the interdepot costs satisfy the
triangle inequality [5], an assumption that we follow throughout this text.

Upper bounds on the optimal value of this problem might be derived by fixing the
vector of location variables y to some value y. We then obtain the following MCNF:

V ^ P P r V ^ P P 1 V ^ P
^ ^ ^ ' J ' J / ^ J >' J (• / / J ri, J ri,

(j,k)eATT
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subject to constraints (2) to (4), (7) and

4- < o^Vj, Vj€T,ieO{j),peP, (10)

4 < <yi, yjeT,ieD{j),peP (li)

This problem decomposes into \P\ single-commodity uncapacitated minimum cost net-
work flow problems. As efficient solution procedures exist for this class of problems
[1], heuristic methods that search the space of location variables appear computation-
ally attractive. Both the new heuristic and the previous CGST heuristic exploit this
observation.

3. TABU SEARCH

The CGST heuristic dates back to 1993 and was one of the flrst application of tabu search
to mixed-integer problems [8]. The approach presented in this paper is based on a similar
problem-solving scheme, but includes a number of improvements and reflnements. In the
following, we first describe the global search strategy, which is similar in both methods.
Then, the most important speciflc features of the new heuristic are underlined and
contrasted with those found in CGST.

3.1 Global Search Strategy

As mentioned in the previous section, the network flow structure of the problem is
exploited by flxing the y variables to 0 or 1, thus determining the status of the cor-
responding depot (i.e., closed or open). For a given vector of values y, a series of
single-commodity minimum cost network flow problems are solved to obtain an alloca-
tion of customers to depots, as well as the interdepot balancing flows for that particular
conflguration of open and closed depots. A configuration of depots with its correspond-
ing flows constitutes a solution to the problem, whose cost is the sum of flxed and flow
costs over the open depots.

Since most customers are linked to only a subset of potential depot sites, some
customers may not be connected to any open depot in a given solution, thus leading
to infeasibility. To enable the search process to consider such infeasible solutions, an
artiflcial depot is added to the network. This depot is always open and is connected to
all customer nodes through high cost arcs (which ensure that no flow will pass through
them, unless there is no feasible alternative). Obviously, the procedure keeps track of
feasibility while the search progresses to make sure that the best proposed solution is
indeed feasible.

The neighborhood structure is based on two different neighborhood types. The first
one consists in moves where a single yj variable is modifled by opening a closed depot
{add move) or by closing an open depot {drop move). In addition to this add/drop
neighborhood, the procedure also considers swap moves in which one simultaneously
opens a depot and closes another. Typically, only a fraction of the add/drop and swap
neighborhood is considered at each move (see Section 3.4 ).

The motivation for this double neighborhood scheme stems from the following ob-
servations. First, in most problems, good solutions tend to have the same number of
open depots. Second, the objective function value tends to vary signiflcantly from one
solution to the next when add/drop moves are performed. The add/drop neighborhood
is therefore a good medium to get close to high quality solutions but, due to the large
jumps in the objective, it can hardly perform an efflcient search once a certain quality
level has been reached. The swap neighborhood is thus used to attain the best possible
conflguration, once the "right" number of open depots has been determined.



MULTIGOMMODITY LOGATION 259

During the search, a global iteration proceeds as follows. First, a sequence of
add/drop moves is followed by a sequence of swap moves. If the best solution found
after these two sequences, called locaLbest, is feasible, a strictly improving swap se-
quence is applied on a (possibly) larger fraction of the swap neighborhood, where only
improving moves are accepted. One could view the latter as a kind of intensification
phase. If locaLbest is not feasible, the costs on the arcs connected to the artificial depot
are adjusted, as well as some control parameters, so that infeasible solutions look less
attractive, before a new sequence of add/drop and swap moves is performed. Note that
each sequence of moves is not of fixed length but rather ends when a maximum number
of consecutive iterations have been performed without improving locaLbest.

After J consecutive global iterations without improving locaLbest (rather than after
a fixed number of global iterations, as in GGST [8]), diversification is performed to
encourage a wider exploration of the solution space. Diversification is applied to the
best global solution found by the search up to that point and consists in reversing the
status of the depots whose status - open or closed - has changed the least often over the
course of the search (see [8] for more details).

To prevent cycling, two tabu lists are defined. List Ti, which is used for add/drop
sequences, records the |Ti | last depots added or dropped from the solution. It prevents
the reversal of their status for as long as the depots stay on the list. The second list
T2 records pairs of depots involved in the last IT2I swaps performed by the search. It
prevents both reversals and repetitions of these moves. In our implementation, the
length of the tabu tenure is a random value chosen within a given interval, rather than
a deterministic (but problem dependent) value, as in GGST [8].

The general problem-solving procedure may then be sketched as follows:

• Initialization

Find an initial solution pg ^^^ set the current solution to yo', Z* := Z(yQ).

• Main procedure

1. Perform a global iteration:

1.1 Set locaLbest to the current solution.

1.2 Perform an add/drop sequence.

1.3 Perform a swap sequence.
1.4 If locaLbest is not feasible, update the search parameters and go to Step

1.2.

1.5 Perform a strictly improving swap sequence.

1.6 If a new best solution is found, update Z*.

2: If at least / moves have been performed, stop the procedure.
3. If J consecutive global iterations without improving locaLbest have been per-

formed since the last diversification, perform diversification to identify a new
current solution.

4. Go to Step 1.

Given this general algorithmic scheme, the most important new features of the improved
heuristic, which are described in the next subsections, may be summarized as follows:

• new initialization procedure;
• exact evaluation of neighbors;
• enhanced sampling procedure for neighborhood reduction.
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3.2 Initialization

A starting solution for the tabu search is quickly produced through a local descent based
on an approximation of the original objective function. This approximation is derived
from the observation that a standard location-allocation problem (i.e., the simple plant
location problem [3, 15]) is obtained by ignoring the interdepot balancing arcs ATT- A
simple heuristic for solving the latter problem starts by opening half of the depots with
lowest flxed costs. Then, the following iterative procedure is applied:

1. Set the current solution to the initial solution.
2. Evaluate the neighborhood of the current solution as follows: for each depot,

consider the cost of the new solution produced by changing the status of this
depot (i.e., from closed to open or from open to closed).

3. If the minimum cost solution in the neighborhood is better than the current so-
lution, set the current solution to this new solution and go to Step 2, otherwise
stop.

Since the interdepot arcs are ignored, each neighboring solution is easily evaluated.
Indeed, in this context, we can deflne a "customer" (̂ , p) as a combination of a customer
i eO\jD and a commodity p e P. Then, if a depot j is to be opened, customer {i,p)
closer to depot j than its currently assigned depot j{i,p) is reallocated to j . The
difference in cost between the new and the current solution is

(where a+ = max{0, a}). Similarly, if a depot j is to be closed, customer (i, p) currently
assigned to it is reallocated to the closest alternative open depot j{i,p). The difference
in cost between the new and the current solution is —Aj.

This approach is to be opposed to the one found in the CGST heuristic, where
the number of open depots in the initial solution is determined a priori, based on a
rough estimate of the number of open depots associated with "good" solutions. The
corresponding number of depots with lowest flxed costs are then opened to determine
the initial conflguration [8].

3.3 Neighborhood Evaluation

The tabu search calls CPLEX [4] to solve exactly the associated minimum cost network
flow problems. Since the status of only one or two depots changes after an add, drop
or swap move, the reoptimization features of CPLEX are fully exploited to limit the
number of simplex iterations. In particular, the optimal basis associated with the current
solution is provided as the initial basis for evaluating each neighbor. This is possible
since the problem speciflcation remains invariant throughout the simplex procedure:
when a depot is closed, each incident arc is forbidden by simply setting upper bounds
on the allowed flow to zero (c.f constraints (10) and (11)). The latter bounding
constraints can be implicitly handled by CPLEX and do not need to be part of the
main problem formulation.

By contrast, CGST evaluates neighboring solutions approximately. First, the in-
terdepot balancing flows are ignored and the impact of a move (add, drop or swap)
is evaluated in the same way as in a standard location-allocation problem. Then, the
modiflcation to the interdepot balancing costs is approximated using an estimate of
the balancing flow costs per commodity unit, which is derived from previous solutions
encountered during the search and updated through exponential smoothing (details can
be found in [8]).
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3.4 Neighborhood Reduction
Exact evaluations are still quite computationally expensive and sophisticated procedures
must be developed to reduce the neighborhood size without compromising solution
quality. In the following, we explain how moves leading to neighboring solutions are
ranked and how these ranks are exploited to bias the selection of moves that are then
evaluated exactly.
3.4-1- Ranking. Two different rankings of neighboring solutions are developed for
the add, drop and swap moves. The rankings use two types of approximations based
either on interdepot balancing costs, or on fixed and allocation costs. In the following,
T^ and T° denote the sets of open and closed depots, respectively. Given these, the
rankings may be described as follows:

• Add (drop)

- Ranking 1: Rank depots j eT°(T^) in increasing (decreasing) order of

i.e., the closed (open) depot with minimum (maximum) UJJ is ranked first.
Ranking 2: Rank depots j € T'^(T^) in increasing (decreasing) order of

(̂.P) - 4 ) ' «r

where, if j € T°, j(^, p) is the open depot currently assigned to customer
(t, p) and, if j € T \ j(i,p) is the open depot other than j closest to customer
(z,p). Thus, the closed (open) depot with minimum (maximum) Aj is ranked
first.

• Swap

— Ranking 1: For each depot fc G T", rank depots j e T^ in increasing order of

¥('ife +

(if j ^ T+(Jfc) or j ^ T (/c), then lOkj assumes a large value). Thus, the open
depot with minimum w ĵ is ranked first.

- Ranking 2: For each depot k €T°, rank depots j € T^ in increasing order of

\ieo(j)

where j(t,p) is the open depot, excluding depot j but including depot k
which is to be opened, closest to customer (i,p). Thus, the open depot with
minimum A^̂  is ranked first.

For swap moves, the open depots are thus ranked with respect to each closed depot.
When a fraction of the neighborhood is desired, this fraction is taken from the sorted list
of open depots at each closed depot k. This approach extends the swap neighborhood
of the GGST heuristic, where only the "closest" open depot j (i.e., with minimum lOkj)
is candidate for a swap [8].
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3.4-2. Ranking selection. At each move, a particular ranking is chosen as follows:

• Add/drop

- When the add/drop neighborhood is considered, a choice must first be made
between add and drop. To this end, a random number is generated between
0 and \T\ — 1. If this number is less than \T^\, drop is selected, otherwise
add is selected. Hence, drop moves are more likely to be selected when \T^ \
is large, and conversely.

- A random selection is then made between Ranking 1 and Ranking 2 for the
selected type of move.

• Swap

- When a swap move is considered, a random selection is made between Rank-
ing 1 and Ranking 2.

3.4-3. Sampling. Assuming that a particular type of move and a particular ranking
are chosen, a sampling method is applied to determine the subset of moves to be eval-
uated exactly. The sampling is biased, as a move is more likely to be selected if it is
better ranked. Assuming d possible moves, the best move (with rank 1) is associated
with some Max value, while the worst move (with rank d) is associated with some Min
value. The values of the other moves are then equally spaced between Min and Max
using the formula:

i — 1
Vi = Max— {Max — Min) x • , 1 < i < rf,

a — I

where Vi is the value associated with the move of rank i. The selection probability pi
of each move is then:

Assuming that Min -h Max = 2, the selection bias in favor of the best moves can be
increased by setting the Max value closer to 2, or reduced by setting its value closer to
1 [2, 16]. The reader is referred to Section 4 for the exact size ofthe samples used in the
computational experiments. Note that a uniform random law is used in [8] to sample
the add/drop and swap (with "closest" open depot only) neighborhoods for the CGST
heuristic.

4. COMPUTATIONAL EXPERIMENTS

To evaluate the improved tabu search heuristic, computational experiments were per-
formed on two classes of problems: small to medium-size randomly generated test prob-
lems and large-scale instances derived from an actual application. Problems in the first
class are the same as those used in [8] to evaluate the CGST heuristic. The second class
of problems is introduced here to measure the impact of using our method on realistic
large-size instances. The currently best known exact method for solving the problem,
the branch-and-bound algorithm of Gendron and Crainic [12], was applied on both test
sets. We observed that the new heuristic can find the optimal solution on every problem
in the first class, but requires more computation time than the exact algorithm. Since
the latter is likely to generate very large search trees when the problem size increases,
we conjectured that for realistic large-size instances, our heuristic might prove more ef-
ficient, while retaining solution quality. Our computational experiments on the second
class of problems suggest that it is indeed the case.
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Problem

RNDi
RND2
RND3
RND4
RND5
RNDe
RNDj
RNDs
RNDg
RNDiQ
RNDn
RNDn
RNDn
RNDu
RND15
RNDiG
RNDn
RNDis
RNDig
RND-20
APPi
APP2
APP3
APP4
APPz

\P\
1
1
4
4
3
3
6
6
1
1
4
4
1
1
2
2
1
1
2
2

12
12
12
12
12

\o\
125
125
125
125
124
124
125
125
124
124
124
124
219
219
219
219
220
220
219
219
289
289
289
289
289

\D\

125
125
125
125
124
124
125
125
124
124
124
124
219
219
219
219
220
220
219
219
289
289
289
289
289

\T\

25
25
25
25
26
26
25
25
26
26
26
26
44
44
44
44
43
43
44
44

130
130
130
130
130

|AOT|

875
875
879
879
871
871
875
875
868
868
869
869

2630
2630
2630
2630
2641
2641
2629
2629
1914
1914
1914
1914
1914

875
875
879
879
871
871
875
875
868
868
869
869

2630
2630
2630
2630
2641
2641
2629
2629
1914
1914
1914
1914
1914

\ATT\

600
600
600
600
650
650
600
600
650
650
650
650

1892
1892
1892
1892
1806
1806
1892
1892
890
890
890
890
890

Table 1: Dimensions of Test Problems

In this section, we summarize the results of these experiments. We first describe the
characteristics of the test problems and then present how promising parameter settings
were selected for the different types of problems. Finally, we compare the results of our
new heuristic with those obtained by other methods.

4.1 Test Pmblems
Table 1 displays the dimensions of the test problems, where problems RNDi to RND12
and RND13 to RND^a are, respectively, small and medium-size randomly generated
instances, while problems APPi to APP5 are based on the actual application. Note
that each randomly generated problem identified with an even number is obtained from
the previous one by multipl3dng the fixed costs by 10. For example, problems RNDi
and RND2 are the same except for this modification. Problem APPi is from an actual
large-scale application. The other problems in this class are obtained by perturbing all
costs by a random factor chosen in the interval [0.8,1.8].

4.2 Parameter Settings
Preliminary experiments have been conducted to determine appropriate parameter val-
ues for our tabu search heuristic. The parameters fall into two classes: those that are
critical with respect to both solution quality and computation time (typically, the set-
ting of these parameters is problem dependent), and those that are less critical, that is.
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%diversf

0
0
0
0
0
0
0
0
10
10
10
10
10
10
10
10
20
20
20
20
20
20
20
20

%add/drop

60
60
60
60
100
100
100
100
60
60
60
60
100
100
100
100
60
60
60
60
100
100
100
100

%swap

0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10
0
10

%stswap

0
0
30
30
0
0
30
30
0
0
30
30
0
0
30
30
0
0
30
30
0
0
30
30

optimal (/60)

40
43
51
52
32
46
51
52
40
53
54
52
47
50
58
56
43
49
56
53
46
50
56
60

Table 2: Parameter Settings for Random Problems

the performance of the algorithm remains similar for values "around" those that were
finally selected. Here are the parameters in this last category with the values chosen in
our tests:

• stopping criterion for each sequence of moves (add/drop and swap): 5 consecutive
moves without improving locaLbest,

• diversification: performed after J = 1 consecutive global iterations without im-
proving local-best]

• tabu tenures: randomly chosen in the interval [2,5];
• ranking selection: Ranking 1 and Ranking 2 are selected with equal probability

for both add/drop and swap moves;
• selection bias in sampling: Min = 0.5 and Max = 1.5.

The remaining more "critical" parameters are:

• /: minimum number of moves performed during the whole search procedure;
• %diversf: percentage of depots to be complemented when a diversification step is

performed;
• %add/drop: percentage of add/drop neighborhood evaluated at each move;
• %swap: percentage of swap neighborhood evaluated at each move;
• %stswap: percentage of strictly improving swap neighborhood evaluated at each

move.
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These parameters were adjusted for the two types of problems, that is, the randomly
generated (20 instances) or the realistic large-size problems (5 instances). After some
preliminary tests, the parameter / was fixed to 150 for the randomly generated prob-
lems, and to 50 for the large-size instances. Our tests revealed that we could have
reduced this number to 100 for the random problems, without compromising solution
quality. However, / = 150 was finally selected as a protection against a bad probabilis-
tic sequence. For the Iarg6-size problems, increasing the number of moves provided no
improvement in solution quality.

Tables 2 and 3 gunimarize the results o|)tained with different values of the critical
parameters, on the randomly generated and the large-size instances, respectively. For
each configuration of the parameters, we show the number of optimal solutions obtained
with the tabu search (these optimal solutions were previously computed by the branch-
and-bound algorithm [12]). Since our tabu search contains stochastic features, each
problem was solved three times. Hence, the total number of runs for each configuration is
20x3=60, for the randomly generated problems, and 5x3=15, for the large-size instances.

Three main conclusions emerge from the first table:

• Swap moves are essential to identify effective solutions. Among the two types of
swap moves, strictly improving swap sequencer appear to be more effective. Since
this might be attributed to the larger percentage of candidates evaluated at each
strictly improving swap move, we have tried to increase %swap up to 30% and
found no noticable improvement in solution quality. Since the size of the swap
neighborhood increases quadratically with the number of depots, allowing more
evaluations would be inefficient.

• Exploring the entire add/drop neighborhood is generally more effective than se-
lecting only a portion of it. Notice that the size of the add/drop neighborhood
grows linearly with the number of depots, so a complete exploration is realistic.

• Diversification is necessary to obtain optimal solutions for some difficult problems.
The best observed value for %diversf was 20 (we have tried to increase %diversf
and found no improvement).

Based on this last observation, we have decided to fix the parameter %diversf to 20
for the tests on the large-size instances. For these problems, preliminary tests have
shown that using the same values for the other parameters would be computationally
impractical. The results of these tests also allowed us to derive promising values, which
are shown in Table 3. The figures in this table support our previous conclusions: (1) it
is essential to perform swap moves and (2) a high value of %add/drop is indicated (note
that we have tried to explore the entire add/drop neighborhood for these problems and
found no improvement).

Based on these results, the values selected for the "critical" parameters, in order to
compare our method with the existing ones, are:

• number of moves /: 150 for random problems, 50 for large-size problems;

• %diversf: 20;

• %add/drop: 100 for random problems, 60 for large-size problems;

• %swap: 10 for random problems, 5 for large-size problems;

• %stswap: 30 for random problems, 10 for large-size problems.
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%diversf

20
20
20
20
20
20
20
20

%add/drop

30
30
30
30
60
60
60
60

%swap

0
5
0
5
0
5
0
5

%stswap

0
0
10
10
0
0
10
10

optimal (/15)

3
3
6
9
9
11
12
12

Table 3: Parameter Settings for Large-Size Problems

Prob

RNDi
RNDi
RNDs
RNDi
RND5
RNDe
RNDt
RNDs
RNDg
RNDio
RNDn
RND12
RNDis
RNDu
RNDis
RNDie
RNDu
RNDis
RNDig
RND20

CGST

Z*

42506
62249

109577
142063
69194
88518

249366
291647

21134
46014
94270

137205
23286
42130
66465
89827
33271
56832
61905

101278

iter
Z*

166
13

266
10

166
252
108
163
33
13

237
214

32
203

92
286
175
241
297
229

CPU
Z*

102
6

704
19

296
395
441
543
22

7
627
482

37
211
236
643
213
270
711
486

CPU

186
169
790
690
550
478

1149
1007
186
175
767
685
310
302
762
670
356
335
715
620

GPS

Z*

42499
61565

108914
142063
69144
88518

248178
290271
21134
46014
93874

136642
23286
42062
65230
89068
33267
56832
60959

100851

iter
Z*

42
77
59
14
17

1
2

23
47

3
3

46
' 0

28
49
90
54

101
16
72

CPU

z*
38
78

306
89
67
4

17
257
45

3
14

300
1

149
598

1680
253
637
213

1240

CPU

140
153
818

1260
670
813

1368
2163

164
185
808

1196
808
938

2280
2798

828
1004
2529
2674

Table 4: Comparison with the CGST Heuristic

4.3 Comparison with Other Methods
We first compare our method to the CGST heuristic. We have obtained from the
authors the detailed results of their experiments on the randomly generated test prob-
lems. Extensive comparisons of the two heuristics are shown in Table 4. For each
method ("CGST" and our procedure, called "GPS"), we indicate: the value of the best
solution found, rounded in thousands of units ("Z*"); the iteration (move) where this
best solution was identified ("iter^*"); the CPU time, in seconds, up to iteration "iter
Z*"{"CP\JZ*")- the total CPU time in seconds ("CPU"). Several important remarks
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clarify the interpretation of these results. First, as our heuristic contains stochastic
features, it was run three times and the results of the worst run are shown. Given
that GPS always identifies an optimal solution, the worst run is the one that finds the
optimal solution the latest. Second, our heuristic was run on a Sun Ultra workstation,
while the CGST heuristic was run on a Sun Sparc 2, which is roughly 10 times slower
than the Ultra. Third, the parameter / in the CGST heuristic was fixed to 300. Fourth,
for the CGST heuristic, the results correspond to the "pure" tabu search and do not
incorporate a descent procedure based on add/drop moves, which is applied at the end
to the best solution found (as suggested in [8]). This descent procedure could improve
the solution found by tabu search for 10 problems out of 20. However, we did not
want to incorporate it into our analysis, since our aim was to compare exclusively the
behavior of the two tabu search procedures, in particular, how fast they find their best
solution.

We observe that the CGST heuristic is generally an order of magnitude faster than
our method. However, the latter found the optimal solution on every instance, while the
CGST heuristic could identify the optimal solution only on 6 out of the 20 instances;
this figure can be raised by using the descent procedure at the end, but still, only 11
instances are then solved to optimality. Note that the CGST procedure is not expected
to provide further improvements when a number of moves larger than 300 is performed.
Indeed, Crainic, Toulouse and Gendreau [10] report that a parallel implementation of
CGST, when a total of at least 600 moves are performed on 4 processors, did not improve
solution quality when compared to the same implementation with at least 300 moves
executed on 8 processors.

To isolate the impact of neighbor evaluation (since other features differentiate GPS
from CGST), we have implemented a simple tabu search heuristic that resembles CGST,
but with the approximate neighbor evaluation replaced by an exact one. This heuris-
tic uses the same initialization as CGST and a uniform sampling, instead of our more
sophisticated initialization and sampling procedures. On the random problems, when
using the same parameter setting as GPS, the resulting method found an optimal solu-
tion 55 times over 60 runs. These results confirm the superiority of the exact neighbor
evaluation over the approximate one used in CGST, and show that a large part of the
improvement provided by the new heuristic can be explained by the exact neighbor eval-
uation. We also observed that the initialization procedure allows the method to identify
the best solution significantly more rapidly than the initialization used in CGST, thus
improving the robustness of the tabu search.

Although the exact neighbor evaluation is crucial in obtaining high quality solutions,
the impact of using a tabu search framework is not negligeable. Indeed, to verify this
conjecture, we have implemented a simple multi-start descent heuristic which proceeds
as follows: each time we start a new descent, we randomly select half of the depots to be
opened (instead of choosing those with the lowest fixed costs), and then proceed with
the same initialization and search procedures as before, but with all tabu mechanisms
and diversification disabled. When used with the same parameter setting as for GPS,
this method found an optimal solution 42 times over 60 runs. Therefore, a simple multi-
start descent heuristic that does not incorporate tabu search mechanisms, even if it is
based on exact neighbor evaluation, is not powerful enough to find optimal solutions to
all problems.

Table 5 compares GPS with the branch-and-bound approach of Gendron and Crainic
[12] on the large-size instances. For our heuristic, we give the same statistics as in
the previous table. For the branch-and-bound method ("BBAL"), we only give the
optimal value ("Z*"), rounded in thousands of units, and the total CPU time in seconds
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Prob

APPi
APP2
APPi
APP4
APPs

BBAL

Z*
49182
61156
59914
60049
51924

CPU
3348
3357
14215
9425
29446

GPS
Z*

49183
61156
59914
60049
51924

iterZ*

22
46
19
30
30

CPUZ*
2709
5587
2384
3672
3643

GPU
11468
6932
6852
6537
6388

Table 5: Comparison with the Branch-and-Bound Algorithm

("GPU"), since we did not have access to other statistics. Both algorithms were run on
a Sun Ultra workstation.

These results show that our heuristic found the optimal solution on 4 out of the 5
test problems, and it came very close on the remaining one. Moreover, the GPU times
are relatively stable, while those of the branch-and-bound algorithm vary widely, even
if the problems are quite similar (in particular, they all have the same dimension). For
3 of these instances, the heuristic is computationally less expensive, while retaining the
same solution quality. This result is certainly encouraging, as it demonstrates that our
heuristic is well-adapted to realistic large-scale instances.

5. CONCLUSION

In this paper, we have presented a tabu search heuristic for solving the multicommod-
ity location problem with balancing requirements. Our heuristic improves a previously
developed tabu search procedure (the GGST heuristic) reported in [8], by performing
an exact neighbor evaluation rather than an approximate one. The new implementa-
tion also includes a number of refinements, in particular, a new initialization procedure
and enhanced neighborhood reduction techniques. Our heuristic found the optimal
solution on every instance taken from a set of randomly generated test problems, previ-
ously designed for testing the GGST method. The new heuristic also found optimal or
near-optimal solutions on large-size instances derived from an actual applicaltion, with
computation times that showed little variance as compared to the branch-and-bound
algorithm of Gendron and Grainic [12].

One possible way to reduce the computation time of the tabu search without affecting
solution quality too much would be to apply exact evaluations only once in a while,
and use approximations otherwise. Investigations along these lines could allow the
heuristic to tackle instances that are out ofthe range ofthe branch-and-bound algorithm.
Another interesting research avenue would be to adapt the tabu search procedure to
similar problems having additional constraints, like capacity constraints on the depots.
This can be done quite easily within the current tabu search framework (which is not
the case for the exact branch-and-bound algorithm).
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